Print this page Email this page
Users Online: 258
Home About us Editorial board Search Ahead of print Current issue Archives Submit article Instructions Contacts Login 
Year : 2015  |  Volume : 29  |  Issue : 2  |  Page : 69-73

Chronoscopic reading in whole body reaction times can be a tool in detecting cognitive dysfunction in type 2 diabetics: A case control study

1 Department of Physiology, SDM College of Medical Sciences, Dharwad, Karnataka, India
2 Department of General Medicine, SDM College of Medical Sciences, Dharwad, Karnataka, India
3 Department of Psychiatry, SDM College of Medical Sciences, Dharwad, Karnataka, India

Correspondence Address:
Vitthal Khode
Department of Physiology, SDM College of Medical Sciences, Sattur, Dharwad, Karnataka
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/0972-4958.163188

Rights and Permissions

Background: Type 2 diabetes mellitus investigated as a risk factor for cognitive decline. It is known that the difference between simple and choice reaction time implies time required for cognition. Though delayed reaction times indicate involvement of cognition, they cannot quantify how much time is required for cognition. In whole body choice reaction time (WBCRT), reaction time is split into two chronoscopic readings: Chronoscopic reading-1 (C1) and chronoscopic reading-2 (C2). C1 measures time required for central processing that requires cognition and C2 measures the total reaction time. C2 - C1 measures time required for peripheral motor response. We hypothesized that WBCRT C1 will be delayed in diabetes and will have predictive value in detecting cognitive dysfunction. Settings and Design: Hospital-based case control study. Materials and Methods: Study was conducted on 120 subjects using visual and whole body reaction times having criteria of age (40-60 years) and diabetes, compared with equal number of age- and sex-matched controls. Statistical analysis was done by independent t-test and duration of diabetes was correlated with cognition times (WBCRT C1) using Pearson's correlation. Predictive value of WBCRT C1 was calculated by using the receiver operating characteristic (ROC) curve. Results: WBCRT C1 (564 ± 107 ms) among diabetes patients was more delayed than WBCRT C1 (513 ± 86 ms) among controls indicating a cognitive dysfunction in patients with diabetes. There was no significant correlation between hemoglobin A1c (HbA1c) levels in patients with diabetes and diabetic duration with WBCRT C1. The best cutoff value for WBCRT C1, when predicting cognitive dysfunction in patients with diabetes, was 517 ms (sensitivity 50%, specificity 40%). Conclusions: WBCRT C1 can be used as a tool to detect cognitive dysfunction in patients with type 2 diabetes mellitus.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded238    
    Comments [Add]    

Recommend this journal